Шнобелевская премия
Джозеф Келлер
Ig Nobel Prize
Раймонд Гольдштейн











Шнобелевская премия 2012 по физике

Конский хвостик и уравнение Хилла



Дело было так. Джозеф Келлер (США), Раймонд Гольдштейн (США и Великобритания), Патрик Уоррен и Робин Ball (Великобритания), опубликовали работы "Форма конского хвостика и статистическая физика волокон пучка волос", Письма физических сообщений (Physical Review Letters), № 198, 2012, и "Движение конского хвостика", Журнал прикладной математики (Journal of Applied Mathematics), №. 70, 2010, с. 2667. Конский хвостик (Ponytail) - волосы схваченные на затылке.

В первой работе каждый волосок конского хвоста рассматривается в виде отдельной нити со случайной функцией кривизны. После анализа форм 115 отдельных таких нитей, специалисты открыли зависимость формы всего хвоста от силы тяжести, кривизны и эластичности. Они установили, что хвост ведет себя как простая струна. Получено дифференциальное уравнение для огибающей пучка. Из уравнения следует, что сила, необходимая для сжатия хвоста, прямо пропорциональна степени сжатия.

В другой работе хвост рассматривают как маятник. Хвост бегущей трусцой женщины качается из стороны в сторону когда она бежит, хотя ее голова не движется из стороны в сторону. Голова бегуньи просто перемещается вверх и вниз, заставляя хвост делать то же. Это вертикальное движение неустойчиво к боковым возмущениям. Мы относимся к хвосту как к жесткому маятнику, он висит на поддержке, которая периодически движется вверх и вниз, и мы решаем линейное уравнение для малых поперечных колебаний. Угловое перемещение маятника и амплитуды каждого режима удовлетворяют уравнению Хилла. Это уравнение имеет решения, которые растут в геометрической прогрессии во времени, когда собственная частота маятника, близка к целому кратному половины частоты колебаний поддержки. Тогда вертикальное движение неустойчиво, а хвост качается.

Уравнение Хилла - линейное дифференциальное уравнение второго порядка. Важными частными случаями уравнения Хилла являются уравнение Матьё и уравнение Мейснера. Уравнение Хилла очень важно для понимания устойчивости движения в осцилляторных системах. В зависимости от конкретной формы периодической функции f(t) решения могут иметь вид устойчивых квазипериодических колебаний, либо колебания будут раскачиваться с нарастающей экспоненциально амплитудой.

За расчет баланса сил, которые формируют движение "конского хвостика" - элемента прически длинноволосых человеческих особей обоего пола, Джозеф Келлерr (США), Раймонд Гольдштейн (США и Великобритания), Патрик Уоррен и Робин Ball (Великобритания) удостоены Шнобелевской премии за 2012 год по физике.


Шнобелевская премия 2022 по инженерии

Как использовать пальцы для поворотного управления ручками? За попытку найти наиболее эффективный способ использования пальцев при повороте ручки, Ген Мацудзаки и еще 4 промышленных дизайнера из Японии заслужили Шнобелевскую премию 2022 года по инженерии
подробнее

Шнобелевская премия - 1998 - экономика

Доктор Сид потратил годы кропотливого труда, чтобы научиться пересаживать эмбрионы одного животного другому. Он специализировался на коровах. 5 декабря 1997 года доктор Сид объявил о том, что собирается клонировать людей. Он полагал, что можно жить вечно
подробнее

facebook
Источник - пресса
(c) 2010-2024 Шнобелевская премияig-nobel@mail.ru